MENU CLOSE
About Us

Who We Are

Our Social Responsibility

Events

Exhibitions

Activeties

Members

Hospitals

Individuals

Companies

Member Benefits

 
Bio-medical projectsi

State Key Laboratory of Biotherapy

Cooperation

Achievement Exhibition

Scimea Journals

Signal Transduction and Targeted Therapy

News

News Information

 
Home   >  News
10 Sep 2020
497
Molecular Biomedicine | Development of a novel TLR8 agonist for cancer immunotherapy
Scimea

Toll-like receptors (TLRs) play a vital role in both innate and adaptive immune responses, which means they are also indispensable in tumorigenesis. Up to now, some TLRs, such as TLR8, TLR4, TLR7 and TLR9 have been demonstrated as cancer drug targets. In this study, researchers developed a novel TLR8 agonist for cancer immunotherapy, which showed significant potentiality as a monotherapy in treating cancer patients and some other diseases.


image.png


Toll-like receptors (TLRs) are a family of proteins that recognize pathogen associated molecular patterns (PAMPs). Their primary function is to activate innate immune responses while also involved in facilitating adaptive immune responses. Different TLRs exert distinct functions by activating varied immune cascades. Several TLRs are being pursued as cancer drug targets. In the present study, the authors discovered a novel, highly potent and selective small molecule TLR8 agonist -- DN052. DN052 exhibited strong in vitro cellular activity with EC50 at 6.7 nM and was highly selective for TLR8 over other TLRs including TLR4, 7 and 9 (Fig. 1).

 

Furthermore, DN052 displayed excellent in vitro ADMET and in vivo PK profiles and potently inhibited tumor growth as a single agent. Moreover, combination of DN052 with the immune checkpoint inhibitor, selected targeted therapeutics or chemotherapeutic drugs further enhanced efficacy of single agents. Mechanistically, treatment with DN052 resulted in strong induction of pro-inflammatory cytokines in ex vivo human PBMC assay and in vivo monkey study. GLP toxicity studies in rats and monkeys demonstrated favorable safety profile. This led to the advancement of DN052 into phase 1 clinical trials.

 

image.png

Fig. 1 In vitro profiles of DN052



Article Access: https://link.springer.com/article/10.1186/s43556-020-00007-y


                                                                                                                                         

Website for Molecular Biomedicine: https://www.springer.com/journal/43556

Looking forward to your contributions


SCIMEA Esophageal Disease Professional Committee Officially Established
Critical Care Medicine Special Committee of Sichuan International Medical Exchange & Promotion Association Held the 2019 Summing-up Meeting
Internal Training | Interpersonal Relationships - Into the Hearts (I)
Molecular Biomedicine | Revisiting cancer hallmarks: insights from the interplay between oxidative stress and non-coding RNAs
Exclusive interview on President Han Demin: practising at the age of 68, his operation skill hasn't rusted a bit
Latest Events Journals News Members About Us Home
Contact Us

Address: No. 1103-1105, Building 6, S2, Global Center, High-tech Zone, Chengdu

Email: scimea@163.com 

Tel: (0086-)028-63859818   

Fax: (0086-)028-63859818   

Contact: (0086-)19113901604 (wechat:19113901604)


Follow Us
Copyright © 2009-2019 SCIMEA. All rights reserved 蜀ICP备19011649号-1